

Non-Porous Ion-Exchange HPLC columns
 for High Speed and High Resolution
 Analysis & Purification of Biomolecules

Hiroshi TOMIZAWA*, Kazuaki MURANAKA, Shimada MUTSUMI, Toshiaki NISHI, Hiroyuki MORIYAMA, Yoichi YASUDA TOSOH Corporation, Bioscience Division

www.tosohbioscience.com

1

Paper presented at Pittcon 2008, New Orleans; session-paper 1840-6

Pittcon 2008, New Orleans, March 5

- New ion-exchange HPLC columns for high-throughput protein separations were developed. They include two cation-exchange columns, one containing a sulphonic acid (SP) ligand, the other a carboxymethyl (CM) ligand. A strong anion-exchange column with quaternary ammonium groups was also developed.
- In all case, the ligand was bonded to methacrylate-based non-porous resin particles of 5, 7 or 10 micron particle size.
- The basic properties of the new columns and their application for the analysis of biomolecules such as proteins, peptides or nucleic acids were studied.
- The pressure drops of the new ion-exchange columns were examined at various flow rates in comparison with commercial TSK-GEL DEAE-NPR and SP-NPR columns packed with 2.5 micron non-porous resin particles. As expected, all new columns exhibited substantially lower back pressures compared with the commercial NPR columns.
- Even with particle sizes above 5 micron, the new ion-exchange columns were found to provide very narrow peak width for proteins. High-throughput separation for proteins on the ionexchange columns were readily achievable with protein analysis times or less than 60 seconds.

- Particle chemistry: methacrylate polymer
- Particle type: non-porous
- Stationary phase ligands: Q, SP and CM
- Particle sizes of 10, 7 and 5µm
 - 5µm for Q-type only
- Column hardware and dimensions
 - Stainless steel tubing and fittings
 - 3.0mm ID x 3.5cm (10µm) for high-throughput separation
 - 4.6mm ID x 10cm (7 & 5μ m) for high resolution

10µm: SP

- Low pressure drop
- For high throughput separation of proteins, peptides and nucleic acids
- Applicable to protein separation times of less than 60 seconds
- Assay of reaction process for protein pegylation
- 7µm: SP, CM, and Q
 - High resolution of proteins, peptides and nucleic acids
 - Separation of monoclonal antibody (mAb) aggregates
 - Separation of charged mAb isomers
 - Analysis of extend of protein pegylation
- 5µm: Q
 - High resolution of nucleic acids
 - Separation of DNA oligomers
 - Separation of siRNA

Characteristics of column Types Investigated

Stationary phase	Particle size (µm)	column size (mm ID x cm)	Features	Application
Q	10	3.0 x 3.5	 High-throughput separation of proteins, peptides and Nucleic acids Low pressure drops 	 Proteins, peptide, LMW nucleic acids
Q	7	4.6 x 10	 High resolution analysis of proteins, peptides 	 Aggregates of Mab, charge isomer of mAb, PEGylated proteins
Q	5	4.6 x 10	 High resolution analysis of nucleic acids 	 Oligo DNA, siRNA
SP	10	3.0 x 3.5	 High-throughput separation of proteins and peptides Low pressure drops 	 Proteins, peptide digests
SP	7	4.6 x 10	 High resolution analysis of proteins, peptides 	 Aggregates of Mab, charge isomer of Mab, PEGylated proteins
СМ	10	3.0 x 3.5	 High-throughput separation of proteins and peptides Low pressure drops 	 Proteins, peptide digests
СМ	7	4.6 x 10	 High resolution analysis of proteins, peptides 	 Aggregates of Mab, charge isomer of mAb, PEGylated proteins

Benefits of typical non-porous resin columns

- High resolution
- High speed

Challenges of typical non-porous resin columns

- High backpressure due to small particle resin
- Low loading capacity

Experimental non-porous resin columns:

- Much higher resolution
- Faster separation (within 1 min.)
 - Suitable for high throughput analysis

- Low backpressure
- High capacity
 - Suitable for minor protein fraction

The same gradient condition: Gradient : B) 0 to 100% (10min.) The same retention time for STI: Gradient : B) 0 to 100% (10min.) for DEAE-NPR B) 0 to 100% (6.5min.) for Q-type trial column

Column Size: 4.6mm ID x 3.5cm, Eluent: A) 20mmol/L Tris-HCl (pH8.5), B) 0.5 mol/L NaCl in A (pH8.5) Flow rate: 1.0mL/min, Samples: 1) conalbumin 2) ovalbumin 3) soybean trypsin inhibitor

Pittcon 2008, New Orleans, March 5

Resolution of TSK-GEL SP-NPR Strong Cation Exchange columns with Standard Protein Analysis

High throughput analysis by Experimental 10µm SP column

High resolution analysis by Exp. 7µm SP column

Eluent : A) 20mmol/L sodium acetate buffer (pH5.0) B) 1.0M NaCl in 20mM sodium acetate buffer (pH5.0) Gradient : described in Figure Flow-rate : described in Figure Sample 1) alpha-chymotrypsinogen A 2) cytochrome C 3) lysozyme Each protein 1mg/mL, 2.5uL injected

High Speed Analysis on Experimental Q column

Analysis within 1 minute is achieved at a flow rate of 2mL/min.

> Exp. Q column, 10µm, 3.0 mm ID x 3.5cm Eluent: A) 20mmol/L Tris-HCI (pH8.5) B) 0.5mol/L NaCl in A (pH8.5) Gradient: B) 0% to 100% (1min.) Flow-rate: 2.0mL/min Sample: 1) conalbumin 2) ovalbumin 3) trypsin inhibitor Detection: UV@280nm

Pressure as a Function of Flow Rate

Comparison of pressure drops between each particle size of the experimental columns with a conventional NPR column of the same column dimension

Column Size: 4.6mm ID x 3.5cm Eluent: A) 20mmol/L Tris-HCI (pH8.5) B) 0.5mol/L Tris-HCI in A (pH8.5) Flow rate: 1.0mL/min Gradient: B) 0 to 100% (10min.) Samples: 1) conalbumin, 2) ovalbumin Detection: UV@ 280nm

Comparison of loading capacity between each particle size of the experimental (trial) NPR columns with a conventional NPR column of the same size

Applications of 10µm Non-porous Resin columns

Purification of Plasmid from *E.coli* Lysate using Experimental High Throughput Anion Exchange column

Agarose Gel Electrophoresis Non-reduced SDS-PAGE

Exp. Q column,10µm, 4.6mm ID x 3.5cm Eluent: A) 20mmol/L Tris-HCI (pH8.5) B) 1.0mol/L NaCl in A (pH8.5) Gradient: B) 80% to 100% (5min.) Flow-rate: 2.0 mL/min Detection: UV@280nm IP129 Pittcon 2008, New Orleans, March 5

Purification of PCR Products using experimental Q-type High Throughput Anion Exchange column

Exp. Q column, 10µm, 4.6mm ID x 3.5cm Eluent: A) 20mmol/L Tris-HCI (pH8.5), B) 1.0mol/L NaCI in A (pH8.5) Gradient: B) 0% to 100% (1.5min.) Flow-rate: 2.0 mL/min, Detection: UV@260nm

Pittcon 2008, New Orleans, March 5

тозон

Analysis of Nucleotides using Experimental Q-type Anion Exchange columns

Exp. Q column, 7µm, 4.6mm ID x 10cm Eluent: A) 20mmol/L Tris-HCl (pH8.5) B) 0.5mol/L NaCl in A (pH8.5) Gradient: B) 0 to 100% (10min.) Flow-rate: 1.5mL/min. Detection: UV@260nm

Comparison of Experimental Q-type columns: High Throughput vs. High Resolution

Assay of Lysozyme PEGylation using an Experimental SP-type High Throughput Cation Exchange column

TOSOH

Assay of beta-Lactoglobulin PEGylation using an Experimental High Throughput Cation Exchange column

PEGylation

5mg/mL beta-lactoglobulin in phosphate buffer pH6.5 Lysozyme / PEG (Mw =5,000) = 1/5

тозон

Assay of mAb PEGylation (1) using an Experimental High Throughput Cation Exchange column

100

90 \bigcirc PEGlate-MAb01 0 80 Native-MAb01 0 •••••••• 70 60 Area % 50 40 30 20 10 0 30 0 10 20 40 50 60 70 Reaction time (min)

Exp. SP column, 10µm, 4.6mm ID x 3.5cm Eluent: A: 20mmol/L Na acetate buffer pH5.0 B: 1.0mol/L NaClO4 in A pH5.0 Gradient: B: 10 to 40 % 1.8min linear Flow-rate: 4.0mL/min Real-time Analysis at 5-minutes intervals

PEGylation

5mg/mL mAb in phosphate buffer pH6.5 Lysozyme / PEG (Mw =20,000) = 1 / 5

Pittcon 2008, New Orleans, March 5

Applications of 7µm Non-Porous Resin columns

тозон

Comparison of Anion Exchange columns for the Analysis of BSA Digest

Comparison of Anion Exchange columns for the Separation of Mouse Ascites containing IgG (2)

Exp. Q column, 7µm, 4.6mm ID x 10cm, DEAE-NPR, 4.6mm ID x 3.5cm Eluent: A) 20mmol/L Tris-HCI (pH8.5) B) 0.5mol/L NaCl in A (pH8.5) Gradient: B) 0 to 100% (10min) Flow rate: 1.0mL/min Detection: UV@280nm

TP129

Pittcon 2008, New Orleans, March 5

тозон

TP129

Simultaneous Analysis of Nucleotides using an Experimental High Resolution Anion Exchange column

TP129

Simultaneous analysis of Deoxynucleotides using an Experimental High Resolution Anion Exchange column

Біти Борн Simu Ехре

Simultaneous analysis of cyclic-NMP using an Experimental High Resolution Anion Exchange column

тозон

Separation of PEGylated Protein using an Experimental High Resolution Cation Exchange column

Comparison of Anion Exchange columns for the Analysis of a mAb Sample

Eluent: A) 20mmol/L Tris-HCl (pH8.5), B) 0.5mol/L NaCl in A (pH8.5) Gradient: B) 0 to 100% (20min.) Flow-rate: 0.77mL/min for ProPac WAX, 1.00mL/min for Exp. Q column Sample: MAb sample Detection: UV@280nm

Comparison of Anion Exchange columns for the Analysis of beta-Lactoglobulin Digest

Comparison of Anion Exchange columns for the Analysis of mAb Digested with Pepsin (1)

Comparison of Anion Exchange columns with the Analysis of mAb Digested with Pepsin (2)

Applications of 5µm Non-Porous Resin columns for Nucleic Acid Separations

TOSOH

Separation of 1kb DNA Ladder using an **Experimental Q column**

TP129

тозон

Separation of Same Size DNA Oligomers (26mer) using an Experimental Q column

- 1. 5'-TAATTAAGGACTCCGTTCTTCTATAT-3'-NH₂
- 2. 5'-TCTTTACTTTAGTCACAAAGCGATAA-3'-NH₂
- 3. 5'-GACTCCGTTCTTCTATATTTTCGAGG-3'-NH₂
- 4. 5'-GGACGTGCTGGGTGTCTTCTCCGTCG-3'-NH₂

Experimental Non-Porous Resin Ion Exchange columns

- Packing Materials
 - Improved core particle
 - High resolution of biomolecules over a wide range of MW
 - Improved surface chemistry
 - Higher loading capacity and stronger retention
- Various Applications
 - High throughput analysis
 - Maintains high resolution at fast flow rates
 - Low backpressure
 - Analysis times of less than 1 minute are feasible
 - High resolution analysis
 - Much higher resolution than conventional NPR columns
 - Nucleic acid analysis
 - Excellent resolution for large DNA fragments