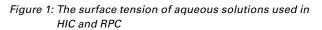
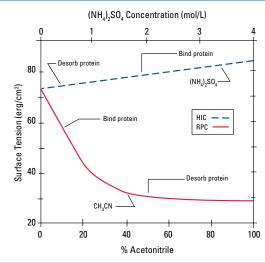


TOYOPEARL Butyl-600M		
TOYOPEARL Butyl-650C	TOYOPEARL Butyl-650M	TOYOPEARL Butyl-650S
TOYOPEARL Ether-650M	TOYOPEARL Ether-650S	
TSKgel Ether-5PW (20)	TSKgel Ether-5PW (30)	
TOYOPEARL Hexyl-650C		
TOYOPEARL Phenyl-600M		
TOYOPEARL Phenyl-650C	TOYOPEARL Phenyl-650M	TOYOPEARL Phenyl-650S
TSKgel Phenyl-5PW (20)	TSKgel Phenyl-5PW (30)	
TOYOPEARL PPG-600M		
TOYOPEARL SuperButyI-550C		

The Role of Hydrophobic Interaction Chromatography in Process Purification

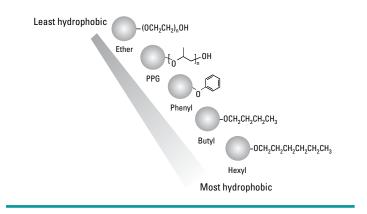

Hydrophobic interaction chromatography (HIC) is a powerful tool for the process purification of biomolecules. The technique utilizes the accessible hydrophobic regions located on protein surfaces and their interactions with a weakly hydrophobic stationary phase. HIC is an excellent complement to ion exchange and size exclusion chromatography particularly when protein isoforms exist or when feedstock impurities are of similar isoelectric point or molar mass. The selectivity differences exploited by HIC can also be used after affinity separations in which closely related proteins with similar recognition sites are not distinguishable by the affinity ligand.


Proteins and other molecules with hydrophobic surfaces are attracted to the hydrophobic ligands of HIC resins. Proteins are bound to the resin by employing an aqueous high salt mobile phase. The salt conditions contribute to a lyotropic effect which allows the proteins to bind to the lower surface coverage of a hydrophobic ligand. Proteins are eluted by the simple technique of decreasing the salt concentration. Most therapeutic targets are eluted in a low salt or a no salt buffer.

During elution, the energy of interaction for a HIC step is less than that of a reversed phase chromatography (RPC) step. One means of gauging the relative binding energy between the two techniques is to measure the surface tension of the two sets of binding and elution conditions. Figure 1 provides a comparison of the surface tension generated by HIC and RPC elution systems.¹ Since HIC separates under milder eluting conditions, biological activity is typically retained.

TOYOPEARL Hydrophobic Interaction Chromatography Resins

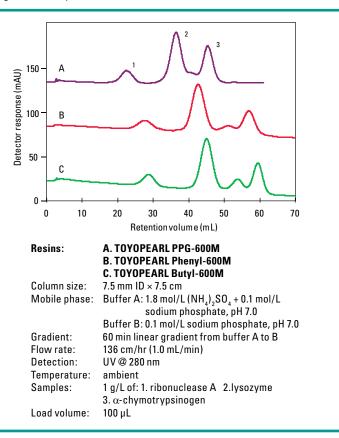
TOYOPEARL HIC resins are functionalized versions of the TOYOPEARL HW size exclusion resins and are therefore based on hydroxylated polymethacrylic polymer beads. Tosoh Bioscience offers five HIC ligands featuring different degrees of hydrophobicity and selectivity. Table 1 lists the properties of these TOYOPEARL HIC resins. The hydrophobicity of TOYOPEARL HIC resins increases through the ligand series: ether, PPG (polypropylene glycol), phenyl, butyl, and hexyl (Figure 2).



Mode	Gradient (Typical)	Δ Surface Tension (erg/cm ²)
HIC	1.8 to 0 mol/L (NH ₄) ₂ SO ₄ / aqueous buffer	4
RPC	10 to 50% ACN/ 0.1%TFA	23

¹C. Horvath et. al., Separation Processes in Biotechnology, Volume 9; Asenjo, J. ed.; Marcel Dekker, Inc.: New York, 1990, p 447.

Figure 2: Available HIC ligands



TOYOPEARL resin	Hydrophobicity	Base bead	Pore size (nm)	Bead diameter (µm)	Ligand type	DBC (g/L)	Pressure rating
Ether-650S	+	HW-65	100	20 - 50	Ether	10-30	0.3 MPa
Ether-650M	+	HW-65	100	40 - 90	Ether	10-30	0.3 MPa
PPG-600M	++	HW-60	75	40 - 90	Polypropylene glycol	45 - 55	0.3 MPa
Phenyl-600M	+++	HW-60	75	40 - 90	Phenyl	45 - 65	0.3 MPa
Phenyl-650S	+++	HW-65	100	20 - 50	Phenyl	30 - 50	0.3 MPa
Phenyl-650M	+++	HW-65	100	40 - 90	Phenyl	30 - 50	0.3 MPa
Phenyl-650C	+++	HW-65	100	50 - 150	Phenyl	30 - 50	0.3 MPa
Butyl-650S	++++	HW-65	100	20 - 50	Butyl	30 - 50	0.3 MPa
Butyl-650M	++++	HW-65	100	40 - 90	Butyl	30 - 50	0.3 MPa
Butyl-650C	++++	HW-65	100	50 - 150	Butyl	30 - 50	0.3 MPa
Butyl-600M	++++	HW-60	75	40 - 90	Butyl	40 - 60	0.3 MPa
SuperButyl-550C	++++	HW-55	50	50 - 150	Butyl	52 - 70	0.3 MPa
Hexyl-650C	+++++	HW-65	100	50 - 150	Hexyl	30 - 50	0.3 MPa

Table 1: Properties of TOYOPEARL HIC resins

Three HIC ligands are available in the TOYOPEARL -600 resin format: PPG, phenyl, and butyl. The selectivities of TOYOPEARL Butyl-600M, TOYOPEARL PPG-600M and the TOYOPEARL Phenyl-600M resins are shown in Figure 3. Available in the TOYOPEARL -650 series are the following four HIC ligands: hexyl, butyl, phenyl, and ether. The remaining ligand available in the TOYOPEARL HIC resin line is SuperButyl-550.

Figure 3: Comparison of TOYOPEARL -600M resins

A comparison of the dynamic binding capacities (DBCs) of the TOYOPEARL -600 resins with TOYOPEARL PhenyI-650M is shown in Figure 4. Figure 5 compares the selectivities of the TOYOPEARL PhenyI-600M and TOYOPEARL PhenyI-650M resins with an agarose based phenyI resin. The narrower pore diameter of TOYOPEARL SuperButyI-550C resin (based on the 50 nm pore diameter TOYOPEARL HW-55 resin) is recommended for the analysis of smaller molecules such as Iysozyme (1.2×10^4 Da). A comparison of the DBC of TOYOPEARL SuperButyI-550C resin with other TOYOPEARL HIC resins is shown in Figures 6 and 7.

Figure 4: Breakthrough curves of polyclonal IgG on various HIC resins

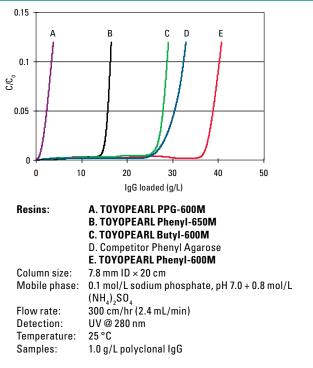
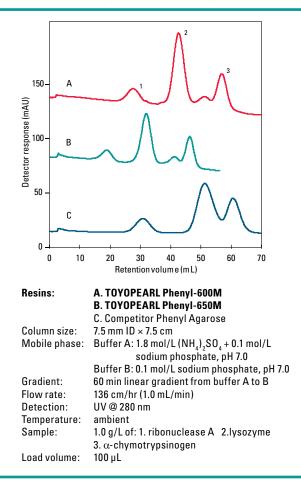



Figure 5: Selectivity comparison of phenyl-type resins

DBC was calculated at 10% breakthrough

Figure 6: Typical dynamic binding capacities for lysozyme

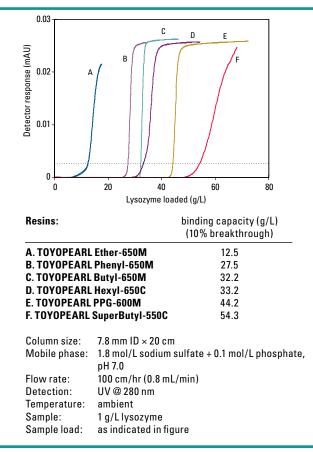
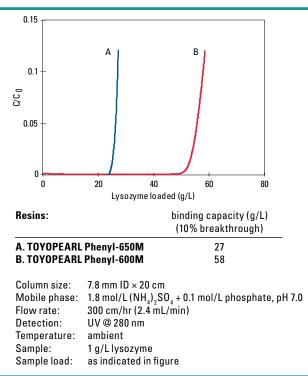
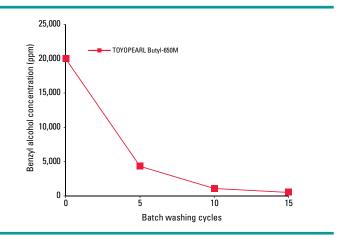



Figure 7: TOYOPEARL Phenyl-600M breakthrough curve (lysozyme)



A 2% solution of benzyl alcohol in water has been identified as a suitable alternative to 20% ethanol as a preservative in resin storage solutions. A sample of TOYOPEARL Butyl-650M resin was prepared by adding 100 mL of aqueous 2% benzyl alcohol to 100 mL of suction filtered resin. A 100 mL aliquot of DI water was added to the filtered resin and stirred to make a slurry. This resin/ DI water slurry was allowed to stand for 5 minutes and was then suction filtered to remove the supernatant. This procedure was repeated 14 more times, for a total of 15 washes.

Samples of the filtered supernatant from the TOYOPEARL Butyl-650M resin was taken after the 5th, 10th, and 15th washes and analyzed for benzyl alcohol concentration (Figure 8). As demonstrated in the figure, a 2% benzyl alcohol solution can be removed from the TOYOPEARL Butyl-650M resin by thorough washing with DI water.

As benzyl alcohol is a hydrophobic molecule, it may not be possible to adequately reduce its concentration from hydrophobic interaction chromatography resins due to interactions between the preservative and the ligand. The use of benzyl alcohol (2%) with chromatography media that are un-functionalized or are functionalized with non-hydrophobic ligands is an acceptable alternative to the recommended 20% ethanol.

Figure 8: Concentration of benzyl alcohol in resin supernatant (batch wash)

The larger pore TOYOPEARL products such as TOYOPEARL Butyl-650 and TOYOPEARL Phenyl-650 resins are very useful for protein aggregate separation and removal. In addition, Tosoh Bioscience HIC resins are very effective in separating misfolded proteins from the native protein form. Because misfolded proteins will generally be more hydrophobic than the native protein, TOYOPEARL Butyl-650M resin is used frequently for the removal of misfolded proteins. In many cases, flow-through chromatography can be accomplished under eluent conditions binding the misfolded protein while allowing the native target protein to flow through the column.

Hydrophobic interaction is a very useful technique for the purification of monoclonal antibodies (mAbs), with their diverse hydrophobic nature. The range of HIC ligands of varying hydrophobicity available from Tosoh Bioscience (Figure 2) gives chromatographic developers a range of options for finding the right ligand for their target molecule.

TSKgel Hydrophobic Interaction Chromatography Resins

The same ether and phenyl ligands that are used for the TOYOPEARL resins are also available within the TSKgel HIC resin product line. Properties of TSKgel HIC resins are listed in Table 2. The TSKgel HIC resins use the same methacrylic polymer chemistry as the TOYOPEARL resins (Table 3) but have a higher degree of crosslinking, making for a more rigid bead. This is necessitated by the higher pressures generated when using smaller particles for chromatography. Greater crosslinking decreases the number of sites available for ligand attachment and thus a TSKgel resin will have a lower dynamic binding capacity than the corresponding TOYOPEARL resin. The polymeric structure of these products also makes them resistant to a wide range of pH conditions and mobile phase ionic strengths. In addition, the hydroxylated surface of the base bead reduces non-specific binding of proteins.

Table 3: Methacrylic base beads available for HIC

Pore size (nm)	5	12.5	40-50	75	100	>100	>170
Resin							
TOYOPEARL HW-type:	40	50	55	60	65	75	80
TSKgel PW-type:	G1000	G2000	G4000		G5000	G6000	

Increasing pore surface area

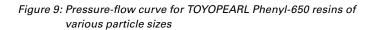
TOYOPEARL HIC resins are chemically stable from pH 1-13. This allows a constant packing volume over a wide range of salt concentrations and cleaning in place (CIP) with acid or base. Also, these resins can be run at elevated temperatures (4-60 °C) and are autoclavable at 121 °C.

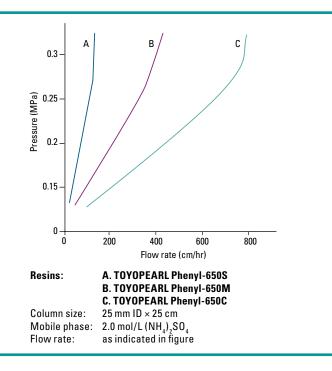
Table 2: Properties of TSKgel HIC resins

TSKgel resin	Hydrophobicity	Base bead	Pore size (nm)	Bead diameter (µm)	Ligand type	DBC (g/L)	Pressure rating
Ether-5PW (20)	+	PW5000	100	15 - 25	Ether	10 - 30	2.0 MPa
Ether-5PW (30)	+	PW5000	100	20 - 40	Ether	10 - 30	2.0 MPa
Phenyl-5PW (20)	++	PW5000	100	15 - 25	Phenyl	10 - 30	2.0 MPa
Phenyl-5PW (30)	++	PW5000	100	20 - 40	Phenyl	10 - 30	2.0 MPa

Because TOYOPEARL and TSKgel HIC resins have the same backbone polymer chemistry, the selectivity for proteins and impurities will be unchanged. Table 4 shows the ligands and particle sizes available for TOYOPEARL and TSKgel HIC resins and is arranged in increasing levels of resolution by bead size (i.e. low, medium, and high resolution). The semirigid polymeric backbone of TOYOPEARL and TSKgel HIC resins permits high flow rates for maximum throughput and productivity. TOYOPEARL HIC resins may be operated at pressures up to 0.3 MPa and TSKgel -5PW HIC resins may be operated up to 2.0 MPa. The pressure-flow characteristics for each particle size grade of TOYOPEARL PhenyI-650 resins are shown in Figure 9.

Resolution increases with decreasing particle size. Resin particle size is proportional to HETP and inversely proportional to the column efficiency and resolution of two peaks. TOYOPEARL HIC resins are available in three particle sizes, though not all ligands are available in each grade:


- S-grade = 35 µm (Superfine)
- M-grade = 65 μm (Fine)
- C-grade = 100 µm (Coarse)


Some processes, such as the purification of antibodydrug conjugates, require resins that are capable of higher resolution separations. For these separations, smaller diameter TOYOPEARL S-grade or TSKgel resins are preferred. TSKgel HIC resins are currently available in two ligands and two bead sizes:

- TSKgel Ether-5PW (30) = 30 μm
- TSKgel Ether-5PW (20) = 20 μm
- TSKgel Phenyl-5PW (30) = 30 μ m
- TSKgel Phenyl-5PW (20) = 20 μm

	Resolution		Pore size (nm)	HIC resin
Low		100	50 100 100 100	TOYOPEARL SuperButyl-550C TOYOPEARL Hexyl-650C TOYOPEARL Butyl-650C TOYOPEARL Phenyl-650C
Madium		65	75 75 75	TOYOPEARL Butyl-600M TOYOPEARL Phenyl-600M TOYOPEARL PPG-600M
Medium		65	100 100 100	TOYOPEARL Butyl-650M TOYOPEARL Phenyl-650M TOYOPEARL Ether-650M
		35	100 100 100	TOYOPEARL Butyl-650S TOYOPEARL Phenyl-650S TOYOPEARL Ether-650S
High		30	100 100	TSKgel Phenyl-5PW (30) TSKgel Ether-5PW (30)
		20	100 100	TSKgel Phenyl-5PW (20) TSKgel Ether-5PW (20)

Table 4: Resolution of TOYOPEARL and TSKgel HIC resins

Parameters to Consider when Using Tosoh Bioscience HIC Resins

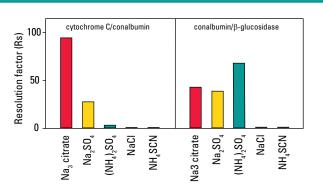
Coordinating the hydrophobicity of the therapeutic target to the resin hydrophobicity is critical for the best overall purification performance. Too hydrophobic a resin for a given protein can result in its irreversible binding to the resin or a loss of biological activity. Tables 5 and 6 show typical mass recovery and biological activity recovery data for TOYOPEARL HIC resins.

Table 5: High mass recovery (%) of proteins

Protein	T	OYOPEARL resi	n
	Ether-650M	Phenyl-650M	Butyl-650M
bovine serum albumin	84	62	76*
lpha-chymotrypsinogen	96	88*	90
cytochrome c	—	81*	87*
lgG	91	—	—
lpha-lactalbumin	90	_	_
lysozyme	94	92	85
ovalbumin	83	88	73
ribonuclease A	_	72*	82*

Procedure: A 200 mL sample containing 200 mg of protein was loaded onto a 7.5 mm ID × 7.5 cm column and eluted with a 60 minute gradient of 1.8 mol/L (*1.5 mol/L) to 0.0 mol/L ammonium sulfate in 0.1 mol/L sodium phosphate, pH 7.0. The mass recovery was determined spectrophotometrically at UV 280 nm and 25 °C.

Table 6: Recovery of enzymatic activity of proteins


TOYOPEARL resin	Protein	% Activity recovery
Phenyl-650	phytochrome	79
Butyl-650	halophilic protease	85
Butyl-650	poly (3-hydroxybutyrate) depolymerase	88
Butyl-650	aculeacin-A acylase	82
Butyl-650	opine dehydrogenase	81

An optimum HIC process step will balance high dynamic binding capacity, adequate selectivity, good mass recovery and retention of biological activity. The wide range of selectivities for TOYOPEARL and TSKgel resins enables a developer to optimize protein separations at the extremes of the hydrophobic spectrum. The more hydrophobic ligands on TOYOPEARL Hexyl-type and TOYOPEARL Butyl-type resins are used to separate hydrophilic proteins. These two resins should also be considered for separations requiring a low salt environment. TOYOPEARL and TSKgel Ether resins are used for the purification of very hydrophobic targets such as certain monoclonal antibodies and membrane proteins. These proteins may bind irreversibly to other more hydrophobic resins.

TOYOPEARL PPG and TOYOPEARL and TSKgel Phenyl resins complement the other HIC ligands available in the HIC series and offer alternatives for moderately hydrophobic proteins.

In addition to the hydrophobicity of the ligand, the selectivity in HIC is influenced by the eluent salt type. Figure 10 demonstrates the effect of salt type on the resolution factor of different protein pairs.² The Hofmeister lyotropic salt series shown in Figure 11 ranks anions and cations by their ability to promote protein precipitation. lons on the left are referred to as "lyotropic" while the ions on the right are called "chaotropic". Lyotropic salts will precipitate or "salt out" proteins at high salt concentrations due to increased hydrophobic interaction, while chaotropic salts will promote protein denaturation at high salt concentrations. The Hofmeister lyotropic salt series indicates that the use of different salt systems may generate a variety of adsorption and desorption selectivities for each resin with a given protein. This feature of HIC provides an additional parameter for the optimization of a process step.

Figure 10: Influence of salt-type on resolution

Chromatography on a Toyopearl Butyl-substituted support

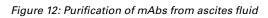
Resin:	TOYOPEARL Butyl-650M
Column size:	4.1 mm ID × 4 cm
Mobile phase:	Buffer A: 20 mmol/L phosphate buffer in 1.0 mol/L
	indicated salt, pH 7.0
	Buffer B: buffer A with 1.0 mol/L indicated salt
Flow rate:	484 cm/hr (1 mL/min)
Detection:	UV @ 280 nm

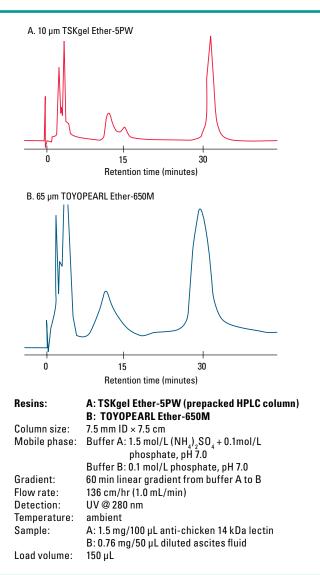
²Fausnaugh, J.; Kennedy, L.; Regnier, F. J. Chromatography, 1984, 141, 317.

Figure 11: Hofmeiseter lyotropic salt series

for anions $SO_{a}^{2} > HPO_{a}^{2} > CH_{3}COO^{-} > halide > NO_{3}^{-} > CIO_{4}^{-} > SCN^{-}$

for cations $(CH_3)_4N^+ > K^+ > Na^+ > Cs^+ > Li^+ > Mg^{2+} > Ca^{2+} > Ba^{2+}$

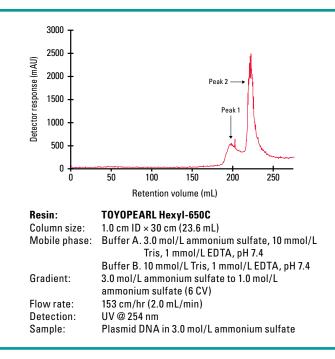

Ammonium sulfate and sodium sulfate are the most commonly used salts in HIC. NaCl is often used as well.


HIC is commonly used as a polishing step in monoclonal antibody purification processes. HIC offers an orthogonal selectivity to ion exchange chromatography and can be an effective step for aggregate clearance and host cell protein reduction, however, this mode of chromatography suffers from the limitation of use of high concentrations of kosmotropic salts to achieve the desired separation. Ghose et al³ reports an unconventional way of operating HIC in the flowthrough (FT) mode with no kosmotropic salt in the mobile phase. TOYOPEARL Hexyl-650C was selected as the stationary phase and the pH of the mobile phase was modulated to achieve the required selectivity. Optimum pH conditions were chosen under which the antibody product of interest flowed through while impurities such as aggregates and host cell proteins bound to the column. The performance of the TOYOPEARL Hexyl-650C resin was comparable to that observed using conventional HIC conditions with high salt.

³Ghose, S.; Tao, Y.; Conley, L.; Cecchini, D. Purification of monoclonal antibodies by hydrophobic interaction chromatography under no-salt conditions. mAbs. 2013, 5, (5), 795-800.

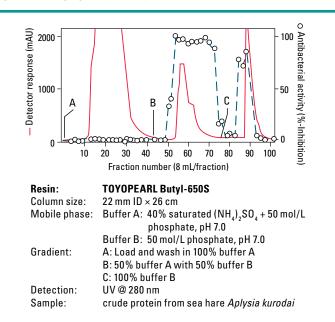
Purification of Monoclonal Antibodies

For a very hydrophobic mAb, such as mouse anti-chicken lectin (14 kDa), the less hydrophobic TOYOPEARL Ether ligand works quite well. The purification of this mAb from ascites fluid (Figure 12) was performed with a 10 μ m TSKgel Ether-5PW semi-preparative column. Identical selectivity for scale-up was found with corresponding 65 μ m TOYOPEARL Ether-650M resin.



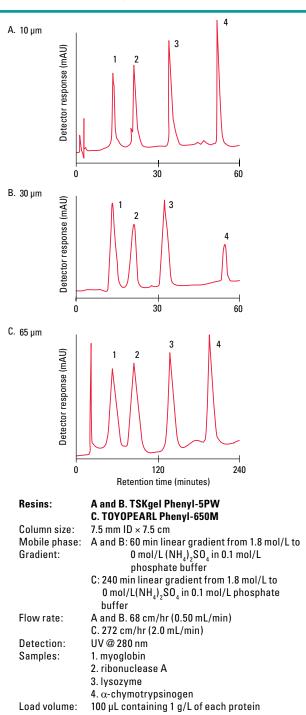
Plasmid DNA Purification

TOYOPEARL Hexyl-650C resin was used successfully for plasmid DNA purification by Cambrex, Baltimore, MD (US patent 6,953,686). The resin was shown to be the most effective among HIC resins for endotoxin removal with capacities exceeding 2 million EU/mL of resin. Additionally, RNA and protein impurities were effectively eliminated. TOYOPEARL Hexyl-650C was also effective in separating the supercoiled and open circular forms of plasmid DNA (Figure 13). Under certain binding conditions, the two forms are bound to the resin, and subsequently eluted with a simple gradient, resulting in two distinct peaks corresponding to the relaxed and supercoiled forms respectively.


Figure 13: Plasmid DNA separation

Purification of Glycoproteins

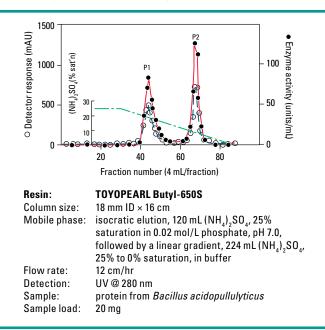
TOYOPEARL HIC resins can purify glycoproteins, which often bind irreversibly to saccharide-based chromatographic media. Figure 14 shows the purification of a large glycoprotein on TOYOPEARL Butyl-650S resin.


Figure 14: Large glycoprotein purified on TOYOPEARL Butyl-650S

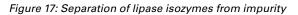
Ultra Purification of Target Compound

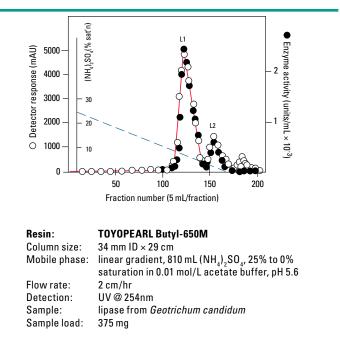
Biopharmaceutical process development often requires a high performance step for ultra-purification of a target compound. To meet these needs, 20 and 30 μ m TSKgel Phenyl-5PW and Ether-5PW are available. The selectivity of these packings is similar to the 10 μ m TSKgel 5PW Phenyl-5PW and Ether-5PW analytical columns. Therefore methods can easily be transferred from analytical to preparative scale resins of the same chemistry using a seamless scaleup strategy. Figure 15 shows the similar elution pattern on 10 μ m and 30 μ m TSKgel packings, along with 65 μ m TOYOPEARL process-scale resin.

Figure 15: Seamless scale up



Purification and Resolution of Pullulanase


The power of HIC is illustrated in a scheme in which pullulanase, an amylase-like enzyme responsible for hydrolysis of branched chain sugars, is purified and resolved into two closely related forms. Ion exchange and size exclusion chromatography effectively purified pullulanase. With TOYOPEARL Butyl-650S, however, two closely related proteins were resolved, based on differences in their surface hydrophobicity (Figure 16).


Figure 16: Separation of two active pullulanase forms

Lipase Isozymes

Incorporation of HIC into a purification scheme has separated lipase isozymes that were not resolved by a previously reported method. After ion exchange and size exclusion chromatography, an additional step employing TOYOPEARL Butyl-650M, as shown in Figure 17, enabled the separation of two active lipase isozymes, L1 and L2, from an inactive impurity. Activity recovery was 93% for this step.

A selection of screening tools are available for TOYOPEARL and TSKgel HIC resins. See the Process Development Products section of this Product Guide for details.

Ordering Information

TOYOPEARL HIC resins:

Part #	Product description	Container size	Bead diameter	Typical lysozyme
		(mL)	(µm)	capacity (g/L)
43151	TOYOPEARL Ether-650S	25	20 - 50	10 - 30
16172	TOYOPEARL Ether-650S	100	20 - 50	10 - 30
16174	TOYOPEARL Ether-650S	1,000	20 - 50	10 - 30
16176	TOYOPEARL Ether-650S	5,000	20 - 50	10 - 30
19805	TOYOPEARL Ether-650M	25	40 - 90	10 - 30
16173	TOYOPEARL Ether-650M	100	40 - 90	10 - 30
16175	TOYOPEARL Ether-650M	1,000	40 - 90	10 - 30
16177	TOYOPEARL Ether-650M	5,000	40 - 90	10 - 30
01001		05	40.00	45.55
21301	TOYOPEARL PPG-600M	25	40 - 90	45 - 55
21302	TOYOPEARL PPG-600M	100	40 - 90	45 - 55
21303	TOYOPEARL PPG-600M	1,000	40 - 90	45 - 55
21304	TOYOPEARL PPG-600M	5,000	40 - 90	45 - 55
21305	TOYOPEARL PPG-600M	50,000	40 - 90	45 - 55
21887	TOYOPEARL Phenyl-600M	25	40 - 90	45 - 65
21888	TOYOPEARL Phenyl-600M	100	40 - 90	45 - 65
21889	TOYOPEARL Phenyl-600M	1,000	40 - 90	45 - 65
21890	TOYOPEARL Phenyl-600M	5,000	40 - 90	45 - 65
21891	TOYOPEARL Phenyl-600M	50,000	40 - 90	45 - 65
43152	TOYOPEARL Phenyl-650S	25	20 - 50	30 - 50
14477	TOYOPEARL Phenyl-650S	100	20 - 50	30 - 50
14784	TOYOPEARL Phenyl-650S	1,000	20 - 50	30 - 50
14935	TOYOPEARL Phenyl-650S	5,000	20 - 50	30 - 50
19818	TOYOPEARL Phenyl-650M	25	40 - 90	30 - 50
14478	TOYOPEARL Phenyl-650M	100	40 - 90	30 - 50
14783	TOYOPEARL Phenyl-650M	1,000	40 - 90	30 - 50
14943	TOYOPEARL Phenyl-650M	5,000	40 - 90	30 - 50
18364	TOYOPEARL Phenyl-650M	50,000	40 - 90	30 - 50
43126	TOYOPEARL Phenyl-650C	25	50 - 150	30 - 50
14479	TOYOPEARL Phenyl-650C	100	50 - 150	30 - 50
14785	TOYOPEARL Phenyl-650C	1,000	50 - 150	30 - 50
14944	TOYOPEARL Phenyl-650C	5,000	50 - 150	30 - 50

Part #	Product description	Container size (mL)	Bead diameter (µm)	Typical lysozyme capacity (g/L)
43153	TOYOPEARL Butyl-650S	25	20 - 50	30 - 50
07476	TOYOPEARL Butyl-650S	100	20 - 50	30 - 50
14701	TOYOPEARL Butyl-650S	1,000	20 - 50	30 - 50
07975	TOYOPEARL Butyl-650S	5,000	20 - 50	30 - 50
18826	TOYOPEARL Butyl-650S	50,000	20 - 50	30 - 50
19802	TOYOPEARL Butyl-650M	25	40 - 90	30 - 50
07477	TOYOPEARL Butyl-650M	100	40 - 90	30 - 50
14702	TOYOPEARL Butyl-650M	1,000	40 - 90	30 - 50
07976	TOYOPEARL Butyl-650M	5,000	40 - 90	30 - 50
18355	TOYOPEARL Butyl-650M	50,000	40 - 90	30 - 50
43127	TOYOPEARL Butyl-650C	25	50 - 150	30 - 50
07478	TOYOPEARL Butyl-650C	100	50 - 150	30 - 50
14703	TOYOPEARL Butyl-650C	1,000	50 - 150	30 - 50
07977	TOYOPEARL Butyl-650C	5,000	50 - 150	30 - 50
22826	TOYOPEARL Butyl-650C	50,000	50 - 150	30 - 50
22020	TOTOFEARE Bulyi-050C	50,000	50 - 150	30 - 50
21448	TOYOPEARL Butyl-600M	25	40 - 90	40 - 60 (γ-globulin)
21449	TOYOPEARL Butyl-600M	100	40 - 90	40 - 60 (γ-globulin)
21450	TOYOPEARL Butyl-600M	1,000	40 - 90	40 - 60 (γ-globulin)
21451	TOYOPEARL Butyl-600M	5,000	40 - 90	40 - 60 (γ-globulin)
21452	TOYOPEARL Butyl-600M	50,000	40 - 90	40 - 60 (γ-globulin)
19955	TOYOPEARL SuperButyI-550C	25	50 - 150	52 - 70
19956	TOYOPEARL SuperButyI-550C	100	50 - 150	52 - 70
19957	TOYOPEARL SuperButyI-550C	1,000	50 - 150	52 - 70
19958	TOYOPEARL SuperButyI-550C	5,000	50 - 150	52 - 70
19959	TOYOPEARL SuperButyI-550C	50,000	50 - 150	52 - 70
44465	TOYOPEARL Hexyl-650C	25	50 - 150	30 - 50
19026	TOYOPEARL Hexyl-650C	100	50 - 150	30 - 50
19020	TOYOPEARL Hexyl-650C	1,000	50 - 150	30 - 50
19028	TOYOPEARL Hexyl-650C	5,000	50 - 150	30 - 50
21973	TOYOPEARL Hexyl-650C	50,000	50 - 150	30 - 50

TSKgel HIC resins:

Part #	Product description	Container size (mL)	Bead diameter (µm)	Typical lysozyme capacity (g/L)
43276	TSKgel Ether-5PW (20)	25	15 - 25	10 - 30
16052	TSKgel Ether-5PW (20)	250	15 - 25	10 - 30
16053	TSKgel Ether-5PW (20)	1,000	15 - 25	10 - 30
18437	TSKgel Ether-5PW (20)	5,000	15 - 25	10 - 30
43176	TSKgel Ether-5PW (30)	25	20 - 40	10 - 30
16050	TSKgel Ether-5PW (30)	250	20 - 40	10 - 30
16051	TSKgel Ether-5PW (30)	1,000	20 - 40	10 - 30
18439	TSKgel Ether-5PW (30)	5,000	20 - 40	10 - 30
43277	TSKgel Phenyl-5PW (20)	25	15 - 25	15 - 35
14718	TSKgel Phenyl-5PW (20)	250	15 - 25	15 - 35
14719	TSKgel Phenyl-5PW (20)	1,000	15 - 25	15 - 35
18438	TSKgel Phenyl-5PW (20)	5,000	15 - 25	15 - 35
43177	TSKgel Phenyl-5PW (30)	25	20- 40	10 - 30
14720	TSKgel Phenyl-5PW (30)	250	20 - 40	10 - 30
14721	TSKgel Phenyl-5PW (30)	1,000	20 - 40	10 - 30
17210	TSKgel Phenyl-5PW (30)	5,000	20 - 40	10 - 30

