
Two-Step Purification Process for Mouse Monoclonal Antibody from Hybridoma Cell Line

<u>Jukka Kervinen</u>, Ph.D., William Evans, Phu Duong, Ph.D., Ali Soleymannezhad Tosoh Bioscience LLC, King of Prussia, PA, USA

- Hybridoma technology is an efficient method for production of monoclonal antibodies (mAbs). It uses mice for eliciting an immune response, followed by fusion of IgG-expressing B-cells with myeloma cells to allow propagation in cell culture.
- Here we present a case study where a proprietary mouse mAb, currently in preclinical development, was efficiently purified using a two-step purification process from hybridoma cell line supernatant ("feedstock").
- The challenge was to obtain a few milligrams of mAb for cell-based functional assays to evaluate the purification process in spite of very low mAb titer (~0.03 g/L) in the feedstock.
- The molecular weight of the purified mouse mAb was determined using a LenS^{3™} multi-angle light scattering (MALS) detector.

https://commons.wikimedia.org/wiki/File:Monoclonals.png

Materials & Methods

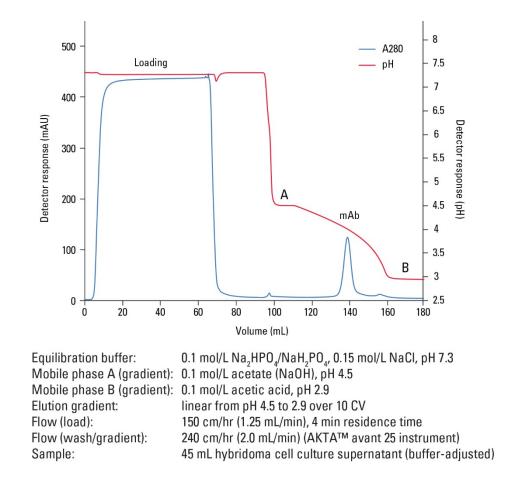
Step 1 (Capture): Column Characteristics

Media	TOYOPEARL [®] AF-rProtein A HC-650F	
Column	Tosoh prepacked	
Bed size	8 mm ID × 10 cm length (5 mL)	
Particle size	45 μm	
Pore diameter	100 nm	
DBC* (5 min)	70 g/L	Sall Brings
DBC* (2 min)	50 g/L	Base
Caustic stability	>200 CIP cycles (0.1 mol/L NaOH)	$\langle \rangle$
Max. pressure	0.3 MPa	-

*DBC = Dynamic Binding Capacity

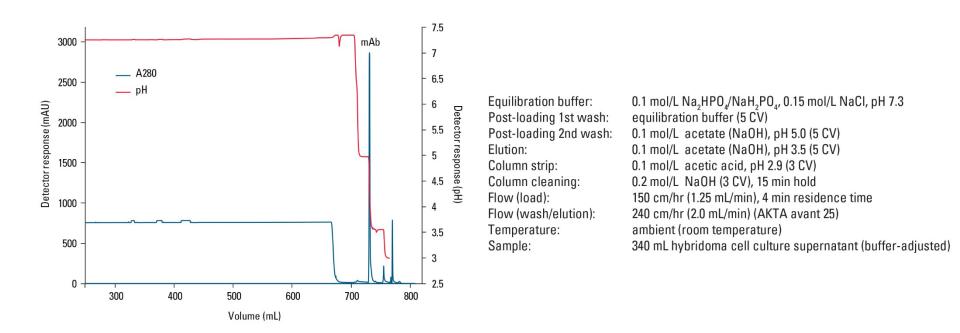
TOYOPEARL AF-rProtein A HC-650F was used for mAb capture and is a polymethacrylate, high dynamic binding capacity protein A affinity media.

Step 2 (Polishing): Column Characteristics


Media	TOYOPEARL Sulfate-650F
Column	Tosoh prepacked
Bed size	7 mm ID × 2.5 cm length (1 mL)
Particle size	45 μm
Pore diameter	100 nm
DBC	>120 g/L of IgG
Caustic stability	0.5 mol/L NaOH
Max. pressure	0.3 MPa

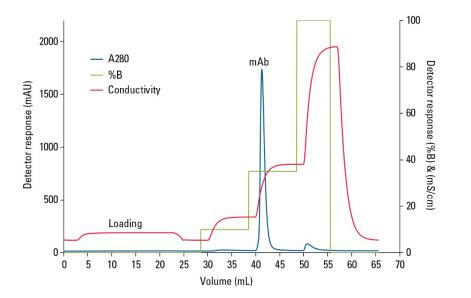
TOYOPEARL Sulfate-650F was selected for mAb aggregate and fragment removal and is a high salt-tolerant cation exchange (CEX) media.

ТОЗОН

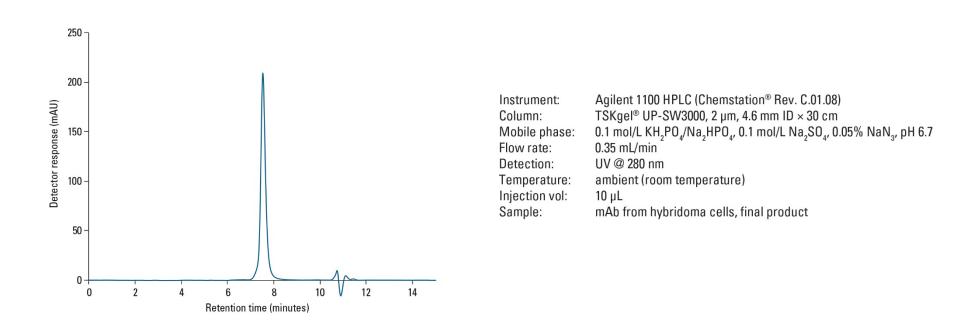

Results: Determination of mAb Elution pH on TOYOPEARL AF-rProtein A HC-650F Resin

A sharp mAb peak with elution max at pH 4.0 was obtained using a linear pH gradient.

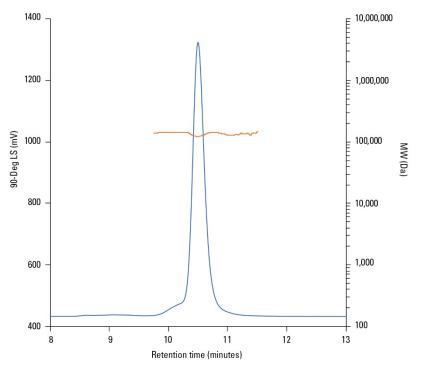
TOSOH BIOSCIENCE LLC


Results: Step 1: mAb Capture on TOYOPEARL AF-rProtein A HC-650F Media

- A sharp and efficient elution peak (4.8 mL) was obtained at the start of pH 3.5 elution
- To ensure complete elution, pH 3.5 was selected for step elution.
- No target leak was detected during pH 5.0 wash.
- Total protein: 9.8 mg in the elution peak. Eluate was prepared for CEX by adding four eluate volumes of 0.2 mol/L acetate, pH 5.0. Diluted eluate was stored overnight at 2-8 °C.


Results: Step 2: Polishing Chromatography on TOYOPEARL Sulfate-650F Resin

Equilibration buffer: 0.1 mol/L acetate (NaOH), pH 5.0 Post-loading 1st wash: equilibration buffer (5 CV) Post-loading 2nd wash: 0.1 mol/L acetate (NaOH), 0.1 mol/L NaCl, pH 5.0 (10 CV) 0.1 mol/L acetate (NaOH), 0.35 mol/L NaCl, pH 5.0 (10 CV) Elution: Column strip: 0.1 mol/L acetate (NaOH), 1.0 mol/L NaCl, pH 5.0 (7 CV) Flow (all steps): 156 cm/hr (1.0 mL/min) (AKTA avant 25 instrument) Sample: 21 mL diluted protein A eluate Temperature: ambient (room temperature)


- Efficient elution of mAb occurred at 0.35 mol/L NaCl step in the equilibrium buffer.
- Protein A eluate contained a small amount of high and low molecular weight impurities.
- High salt tolerant cation exchange resin (TOYOPEARL Sulfate-650F) was selected and step optimized to remove remaining impurities.
- Eluate was subjected to SEC and MALS analyses to confirm purity and monomeric state.

Elution peak at ~7.5 min indicates a largely monomeric mAb.

Results: Final Product: Molecular Weight Determination using MALS Technology

LenS₃ MALS instrument connected to TSKgel UP-SW3000, 2 μ m, 4.6 mm ID x 30 cm column was used for analysis.

Right angle light scattering (RALS) signal of mAb is in blue and molecular weight distribution is in orange (dn/dc = 0.185, dA/dc = 1.4, flow = 0.25 mL/min).

- The molecular weight of mAb is 129 kDa, as determined using RALS signal.
- MALS result confirms that the final mAb product is highly monomeric.

- TOYOPEARL AF-rProtein A HC-650F affinity media was used for capture and a novel salt-tolerant cation exchange (CEX) media, TOYOPEARL Sulfate-650F, was used as a polishing step.
- Protein A chromatography was optimized for loading at pH 7.3, followed by intermediate wash at pH 5.0 and elution at pH 3.5 in acetate buffer.
- CEX chromatography was carried out in 0.1 mol/L acetate, pH 5.0, and included a post-loading wash with 0.1 mol/L NaCl and mAb elution at 0.35 mol/L NaCl.
- Final product (total 5.7 mg) was highly monomeric, size 129 kDa, and >95% pure as analyzed by a UHPLC SEC column, TSKgel UP-SW3000, connected to UV and a LenS₃ multi-angle light scattering (MALS) instrument.
- In summary, the purification process presented here was effective for this novel mAb from hybridoma cell line supernatant and the process can feasibly be scaled up to a pilot or manufacturing scale.